

SECOND REHEARSAL EXAMINATION 2024-25

Subject: MATHEMATICS (BASIC) -241

MARKING SCHEME

Time: 3 hrs Max. Marks: 80 Date: 16-01-2025

General Instructions:

1. This Question Paper has 5 Sections A - E.

2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

3. Section **B** has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section **D** has 4 questions carrying 05 marks each.

6. Section **E** has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$, wherever required if not stated.

SECTION A								
Q.1.	$\mathbf{(B)} \ x \ y^2$	Q.11.	$(\mathbf{B}) \angle \mathbf{B} = \angle \mathbf{D}$					
Q.2.	(D) 3, 1	Q.12.	(A) 10 cm					
Q.3.	$(\mathbf{A}) \frac{8}{5}, \frac{-8}{5}$	Q.13.	$\mathbf{(B)} \ \frac{b}{\sqrt{b^2 - a^2}}$					
Q.4.	(D) (0, -1)	Q.14.	(D) 3.5					
Q.5.	(A) 40°	Q.15.	$(\mathbf{C})\frac{2}{25}$					
Q.6.	(D) 10	Q.16.	(B) - 124					
Q.7.	$(\mathbf{C})\frac{5}{2}$	Q.17.	(A) 7					
Q.8.	(A) 4:7	Q.18.	(A) 3					
Q.9.	(D) 16	Q.19.	(a) Both Assertion (A) and Reason (R) are true and Reason					
			(R) is the correct explanation of Assertion (A)					
Q.10.	(C) -1	Q.20.	(d) Assertion (A) is false, but reason (R) is true					

SECTION B

Section B consists of 5 questions of 2 marks each

Q.21. (a) Mid point of BD=
$$\left(\frac{5-1}{2}, \frac{4+6}{2}\right)$$
=(2, 5)

 \Rightarrow Mid point of AC = Mid point of BD

1/2

Hence, ABCD is a parallelogram.

(OR) Mid point of AC =
$$\left(\frac{3+1}{2}, \frac{8+2}{2}\right) = (2, 5)$$

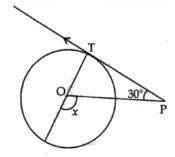
$$AB^2 = 3^2 + 4^2 = 25$$

(b)
$$BC^2 = 7^2 + 1^2 = 50$$

$$AC^2 = 4^2 + 3^2 = 25$$

⇒ BC² = AB² + AC²
∴
$$\triangle$$
 ABC is a right-angled triangle.

Q.22.



$$\angle$$
 OTP = 90° (tangent \bot radius at the point of contact) 1
Getting x = 120° 1

Q.23. (a

Here
$$d = \frac{1}{12} - \frac{1}{15} = \frac{1}{60}$$

$$\therefore S_{15} = \frac{15}{2} \left[\frac{2}{15} + 14 \times \frac{1}{60} \right]$$

$$= \frac{15}{2} \times \frac{22}{60} = \frac{11}{4}$$

$$\frac{1}{2} \times \frac{1}{2} = \frac{11}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac{11}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \frac{1$$

(OR)

(b) For a, 7, b, 23, to be in AP it should satisfy the condition,

$$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = d$$

$$7 - a = b - 7 = 23 - b \dots (1)$$

By equating,

$$b - 7 = 23 - b$$

$$2b = 30 \Rightarrow b = 15$$

And,
$$7 - a = b - 7$$

$$7 - a = 15 - 7 \Rightarrow a = -1$$

Therefore, the sequence - 1, 7, 15, 23 is an AP.

Q.24. $5 \csc^2 45^\circ - 3 \sin^2 90^\circ + 5 \cos 0^\circ$

$$=5(\sqrt{2})^2-3(1)^2+5(1)$$

1

= 12

1

Q.25.

Class	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100
Frequency	8	7	12	5	3

Modal class is 40-60

Mode = L +
$$\frac{f_0 - f_1}{2f_0 - f_1 - f_2} \times h$$

$$=40 + \left(\frac{12-7}{24-7-5}\right) \times 20$$

=48.3

SECTION C

Section C consists of 6 questions of 3 marks each

Q.26. Let us assume that $5 - 2\sqrt{2}$ be a rational number.

1/2

 $\therefore 5 - 2\sqrt{2} = \frac{p}{q}$, where p and q are integers and $q \neq 0$.

$$\Rightarrow \sqrt{2} = \frac{5q - p}{2q}$$

RHS is a rational number. So, LHS is also a rational number which contradict

the given fact that $\sqrt{2}$ is an irrational number.

1

So, our assumption is wrong.

1/2

Hence. $5 - 2\sqrt{2}$ is an irrational number.

Q.27. Let the points A(2, 1) and B(5, -8) is trisected at the points P(x, y) and Q(a, b).

Thus, AP = PQ = QB

Therefore, P divides AB internally in the ratio 1:2

1/2

then the coordinates $(x, y) = \frac{\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)}{m+n}$

1/2

$$\Rightarrow (x,y) = \left(\frac{5+4}{3}, \frac{-8+2}{3}\right)$$

$$\Rightarrow (^x, y) = \left(\frac{9}{3}, \frac{-6}{3}\right)$$
$$\Rightarrow (^x, y) = (3, -2)$$

1 1/2

Therefore, (3,-2) satisfies the equation 2x-y+k=0

$$2(3)-(-2)+k=0$$

1/2

k = -8

(OR)

Let O(2a-1,7) is the center and A(-3,-1) is on the circumference then

$$OA^2 = 10^2 = 100$$

or
$$(2a-1+3)^2+(7+1)^2=100$$

$$(2a+2)^2+64=100$$

$$4a^2 + 8a + 4 + 64 = 10$$

$$4a^2 + 8a - 32 = 0$$

$$a^2 + 2a - 8 = 0$$

$$a^{-} + 2a - 6 = 0$$
 $(a+4)(a-2) = 0$

Hene a = -4 and 2

Q.28. L.H.S. =
$$(1 + \tan A)^2 - \sec^2 A$$

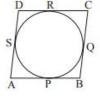
$$= 1 \tan^2 A + 2 \tan A - \sec^2 A$$

$$= \sec^2 A + 2\tan A - \sec^2 A$$

$$= 2 \tan A = R.H.S.$$
 1

Q.29.

Correct figure



$$AB + DC = AP + PB + DR + RC$$

$$= AS + BQ + DS + CQ$$

$$= AD + BC$$

Since, ABCD is a llgm, AB = DC, AD = BC

$$2AB = 2AD$$

$$AB = AD$$

$$\Rightarrow$$
 ABCD is a rhombus $\frac{1}{2}$

(OR)

∠ROT=2∠RST

Also, ∠ROT=∠POR=130°

So, we get:

 \Rightarrow 130°=2 \angle RST \Rightarrow \angle RST=65°.....(1)

Therefore, $\angle 2=65^{\circ}$

⇒∠ROT+∠QOT=180°

 \Rightarrow 130°+ \angle QOT=180° \Rightarrow \angle QOT=50°.....(2)

1

1

Now, in $\triangle POQ$, we have,

∠PQO=90° (angle subtended by a tangent at a circle)

∠QOT=50° So, we get:

1

 $\Rightarrow \angle QOT + \angle PQO + \angle OPQ = 180^{\circ} \Rightarrow 50^{\circ} + 90^{\circ} + \angle 1 = 180^{\circ} \Rightarrow \angle 1 = 180^{\circ} - 140^{\circ} \Rightarrow \angle 1 = 40^{\circ}$

Q.30.

CI	f	x _i	d _i	u _i	f _i u _i
0-10	5	5	-30	-3	-15
10-20	10	15	-20	-2	-20
20-30	18	25	-10	-1	-18
30-40	30	35	0	0	0
40-50	20	45	10	1	20
50-60	12	55	20	2	24
60-70	5	65	30	3	15
Total	100				6

Table 1

1/2

mean =
$$A + \frac{\sum f_i u_i}{\sum f_i} \times h$$

= $35 + \frac{6}{100} \times 10$
= $\frac{356}{10}$ or 35.6

11/2

Q.31. 2x + 3y = 11 ----(1)

2x - 4y = -24 ----(2)

1

Solving (1) and (2), we get x = -2

1

y = 5

y = mx + 3

m = -1

1

SECTION D

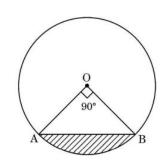
Section D consists of 4 questions of 5 marks each

Q.32.

Area of sector AOB =
$$\frac{22}{7} \times 7 \times 7 \times \frac{90}{360}$$

$$= \frac{77}{2} \text{ cm}^2$$
Area of \triangle AOB = $\frac{1}{2} \times 7 \times 7 = \frac{49}{2} \text{ cm}^2$

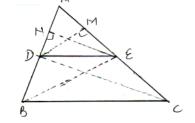
$$\therefore \text{ Shaded area} = \frac{77}{2} - \frac{49}{2} = \frac{28}{2} = 14 \text{ cm}^2$$
Length of arc AB = $2 \times \frac{22}{7} \times 7 \times \frac{90}{360} = 11 \text{ cm}$



Q.33.

For Figure: 1

Given : In \triangle ABC, DE || BC To prove : $\frac{AD}{DB} = \frac{AE}{EC}$



Const.: Join BE, CD. Draw DM ⊥ AC and EN ⊥ AB

Proof: $\frac{\operatorname{ar}(\Delta \text{ ADE})}{\operatorname{ar}(\Delta \text{ BDE})} = \frac{\frac{1}{2} \times \operatorname{AD} \times \operatorname{EN}}{\frac{1}{2} \times \operatorname{DB} \times \operatorname{EN}} = \frac{\operatorname{AD}}{\operatorname{DB}}$ (i)

Similarly $\frac{\operatorname{ar} (\Delta \text{ ADE})}{\operatorname{ar} (\Delta \text{ CDE})} = \frac{\operatorname{AE}}{\operatorname{EC}}$ (ii) $\frac{1}{2}$

 Δ BDE and Δ CDE are on the same base DE and between the same parallel lines BC and DE.

∴ $ar(\Delta BDE) = ar(\Delta CDE)$ _____(iii)

From (i), (ii) and (iii), we get $\frac{AD}{DB} = \frac{AE}{EC}$

Q.34.

Let the tens and units digits of the required number be x and y respectively.

Then,

$$xy = 18 \Rightarrow y = \frac{18}{x} \qquad \qquad \dots (i)$$

And, (10x + y) - 63 = 10y + x

$$\Rightarrow 9x - 9y = 63 \Rightarrow x - y$$

$$= 7 \qquad \dots(ii)$$

1/2

 $\frac{1}{2}$

Putting $y=rac{18}{x}$ from (i) into (ii), we get

$$x - \frac{18}{x} = 7$$

$$\Rightarrow x^2 - 18 = 7 \Rightarrow \qquad x^2 - 7x - 18 = 0$$

$$\Rightarrow x^{2} - 9x + 2x - 18 = 0 \Rightarrow x(x - 9) + 2(x - 9)$$

$$= 0$$

$$\Rightarrow (x-9)(x+2) = 0 \Rightarrow x-9 = 0 \text{ or } x+2 = 0$$

$$\Rightarrow x = 9 \text{ or } x = -2$$

$$\Rightarrow x = 9$$
 [: a digit cannot be negative].

Putting x=9 in (i), we get y=2.

Thus, the tens digit is 9 and the units digit is 2.

Hence, the required number is 92.

(OR)

Let age of father = x years
and age of son =
$$(45 - x)$$
 years
Five years ago, age of father = $(x - 5)$ years
Age of son = $(40 - x)$ years
A. T. Q., $(x - 5)(40 - x) = 124$

$$x^2 - 45x + 324 = 0$$

$$(x - 36)(x - 9) = 0$$

$$x = 36, x = 9 \text{ (rejected)}$$

$$\Rightarrow \text{Father's age} = 36 \text{ years and son's age} = 9 \text{ years}$$

Q.35.

Let h be the height of the tree and x be the width of the bank

Correct figure 1
In right ΔABC

$$\tan 60^\circ = \frac{h}{x}$$

$$\sqrt{3}x = h \qquad \dots (1)$$

In rt
$$\triangle ABD$$
 tan $30^\circ = \frac{h}{30 + x} \Rightarrow \frac{30 + x}{\sqrt{3}} = h$...(2)

Solving (1) & (2)
$$x = 15m$$
, $h = 15\sqrt{3} m = 25.98 m$

The height of the tree = 25.98 m and the width of the bank=15 m

OR

The height of the building = 7 m, height of the tower = (7 + h) m

For figure 1

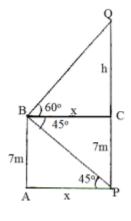
In
$$\triangle$$
 ABP, $\tan 45^\circ = \frac{7}{x} \Rightarrow x = 7$

$$1 + \frac{1}{2}$$
In \triangle BCQ, $\tan 60^\circ = \frac{h}{x} \Rightarrow h = \sqrt{3} x$

$$h = 7\sqrt{3} m$$

$$1 + \frac{1}{2}$$

:. Height of tower = PQ = 7 + h
=
$$7 + 7\sqrt{3} = 7(1 + \sqrt{3})$$
 m



The height of the tower = $7(1+\sqrt{3})$ m

SECTION E

Case study- based questions are compulsory

1

1

Q.36. <u>Case study-based question 1:</u>

- (i) P (favourite colour being white) = $\frac{120}{360}$ or $\frac{1}{3}$
- (ii) P (favourite colour being blue or green) = $\frac{60+60}{360}$ or $\frac{1}{3}$
- (iii) (a) Let total number of students be $x \Rightarrow \frac{15}{x} = \frac{1}{4}$
- \Rightarrow x = 60 or total 60 students participated in survey.

OR

(iii)(b) P (favourite colour being red or blue) = $\frac{60+30}{360}$ or $\frac{1}{4}$

Q.37. Case study-based question 2:

Now, answer the following questions based on the above given information.

- (i) -1 and 3
- (ii) $-1 \times 3 = -3$
- (iii)(a) $x^2 (\alpha + \beta)x + \alpha\beta$ = $x^2 - 2x - 3$
- $= x^{2} 2x 3$ (OR)
- (iii)(a) sum = -2, product = 1/3
- $x^{2} (\alpha + \beta)x + \alpha\beta = x^{2} + 2x + \frac{1}{3} = \frac{1}{3}(3x^{2} + 6x + 1)$ 1+1

Q.38. Case study-based question 3:

- (i) Volume of material = $3.14 \times 2.2 \times 10 = 125.6 \text{ cm}^3$ or 880/7
- (ii) Inner SA of the bowl = $2 \times 3.14 \times 25 = 157 \text{ cm}^2$ or 1100/7
- (iii) (a) Volume of the metal = $\frac{2}{3} \times 3.14 \times (6^3 5^3)$
 - = 190·5 cm³

OR

(iii) (b) Total SA of mallet = $2 \times 3.14 \times 2 (2 + 10)$ = 150.7 cm^2
